7g+9^2-11g=g(4+11g)

Simple and best practice solution for 7g+9^2-11g=g(4+11g) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7g+9^2-11g=g(4+11g) equation:



7g+9^2-11g=g(4+11g)
We move all terms to the left:
7g+9^2-11g-(g(4+11g))=0
We add all the numbers together, and all the variables
7g-11g-(g(11g+4))+9^2=0
We add all the numbers together, and all the variables
-4g-(g(11g+4))+81=0
We calculate terms in parentheses: -(g(11g+4)), so:
g(11g+4)
We multiply parentheses
11g^2+4g
Back to the equation:
-(11g^2+4g)
We get rid of parentheses
-11g^2-4g-4g+81=0
We add all the numbers together, and all the variables
-11g^2-8g+81=0
a = -11; b = -8; c = +81;
Δ = b2-4ac
Δ = -82-4·(-11)·81
Δ = 3628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3628}=\sqrt{4*907}=\sqrt{4}*\sqrt{907}=2\sqrt{907}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{907}}{2*-11}=\frac{8-2\sqrt{907}}{-22} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{907}}{2*-11}=\frac{8+2\sqrt{907}}{-22} $

See similar equations:

| -4x-6=−3x-10 | | -181=-6p-5(-5p+2) | | 3.5x−1=2.5 | | 2|4w-1|=3|4w+2 | | 9c+4=-5+14+13c | | 4.3d+7,5=5.8d | | 2(x+18)=15 | | 5(−v−5)∙3(v−8)=0 | | 12+2x-3+3x=17+x | | 9-1(2p-1)=41 | | 6x-8+5x=25 | | 4/5+5m/9=71/45 | | n-5+6=-1 | | 10x+4+8x=6x | | x+16=8-3x | | 2/3n-2=-2+7/3n | | 2(3x-4)=3(3x+5) | | x+24=4x-105 | | 10(x+3)-5=2x+8(1+x) | | 1+8n+5n=14 | | 5^2x=79 | | 12=3n-1 | | 3x+2+3x=-4 | | 1/2x+2/3x=5 | | 3=2f-7 | | 92=36+24v | | 8=5n-3n | | 10x+30-5=2x+8+8x | | -5x+12=3x-8 | | 3.2y=14.8 | | 3x+15+6=2x-9+2x | | 4^x2-11x+30=16 |

Equations solver categories